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The original Kac ring model is examined for the situation in which some 
of the scatterers are non-time-reversal invariant. It is shown that the 
system tends to absolute equilibrium (no fluctuations) even in the limit 
of very small density of these anomalous scatterers. 
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1. I N T R O D U C T I O N  

The one-dimensional ring model proposed by Kac ~1~ and developed by 
others ~2~ has been very successful in explicating the irreversible behavior of  a 
large system whose underlying (microscopic) dynamics is time-reversal- 
inva6ant. Various phenomena, assumed or believed true for real (three- 
dimensional) systems, can be demonstrated explicitly for the Kac ring model. 
These phenomena include the approach to equilibrium in terms of the reduc- 
tion of the Liouville equation to the Boltzmann equation via the Pauli 
master equation, ~) the interdependence of small systems (clocks), ~3) and the 
behavior of  fluctuations at equilibriumJ 4~ Until the present the model has 
been solved with a variety of  microscopic dynamics, including both quantum 
mechanical and classical mechanical, with the proviso that the interaction 
be time-reversal invariant. ~5~ We propose here to examine the effect on the 
macroscopic behavior of  the inclusion of a non-time-reversal-invariant part  
to the interaction. In particular, we shall investigate the behavior of  the 
system in the limit of  a very weak, non-time-reversal-invariant interaction. 
Such a limit will be seen to be akin to the limit of  weak interaction in deriving 
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the ideal gas equation (classical or quantum mechanical) using equilibrium 
statistical mechanics. (6) 

The motivation for this investigation is twofold. First, there is the ob- 
vious connection to the real world as manifested by the K K  non-time-reversal, 
invariant coupling to the baryons. (7) The object is to see what the introduction 
of even a vanishingly small density of such particles will do to the macro- 
scopic behavior of the universe. The second reason is more general. We would 
like to investigate the behavior of an exactly soluble model (albeit, non- 
physical) for as wide a range of interactions as possible. To this end, we turn 
our attention to a description of the proposed model in the next section. 

2. THE  T I M E - R E V E R S I B L E  M O D E L  

The original (classical) model assumed n particles (balls) with two 
internal states (black and white) and m randomly located scatterers which 
change the state of a particle when it passes them. (1) The boundary conditions 
are periodic; that is, the n particles are arranged in the form of a ring. More 
precisely, the state r / o f  a particle is given by 

np(t) = + 1 if the particle at position p at time t is white 

np(t) = - 1 if the particle at position p at time t is black 

The indicator for the position is written as 

% = + 1 if there is no scatterer at position p 

% = - 1 if there is a scatterer at position p 

The equation of motion is 

n,(t + 1) = %+1~ ,+1 ( t )  0) 
o r  

n,(r = %+1-.. %+t%+,(0) (2) 

indicating that a particle changes state when passing a scatterer. The macro- 
state of  the system is described by the order parameter  

r ( t )  = (l/n) ~ n,(t) (3) 

The behavior of  F as a function of time for the initial condition F(0) = 1 
(all white balls) has been given elsewhere and will not be repeated here. (a'~) 
Rather, we shall use a geometric description of the temporal behavior of the 
system as presented in Ref. 4. This will enable us to include what we shall 
refer to as anomalous scatterers. Figure 1 of Ref. 4 illustrates the description 
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for one model with n = 78 and m = 8 starting with all white balls at t = 0. 
(The X's denote white balls and the dots denote black balls.) It can be seen 
that the essential feature of  the temporal behavior is given by the alternation 
of black and white parallelograms. It is thus not necessary to think of the 
model as having a discrete set of positions. We can therefore imagine Fig. 1 
redrawn so that there is a continuous distribution on the p and t axes while 
preserving a fixed number of scatterers. These scatterers then serve to indi- 
cate where the boundaries of the parallelograms are. (The precise meaning 
of the continuous description in terms of the original model is not needed 
here and will be elaborated on in a future paper dealing with the relation- 
ship between the Kac ring model and the n-dimensional Ising model.) It is 
now possible to add anomalous or non-time-reversal-invariant scatterers to 
the set of ordinary or time-reversal-invariant scatterers and obtain a simple 
description of the temporal behavior of the new system. This perhaps 
unexpected behavior is given in the next section. 

3. THE T I M E - I R R E V E R S I B L E  M O D E L  

Before constructing a general theorem concerning the behavior of Kac 
ring models with anomalous scatterers, we present a few case histories from 
which the general behavior will be almost self-evident and will require only 
simple arguments. We first define an anomalous scatterer as one which 
changes white balls to black balls but leaves black balls unchanged. The 
number of such scatterers will be denoted by ml. It might be supposed that 
when n and m are both large with m/n fixed and ml small, the original model 
behavior would be recovered. We shall see, however, that such is not the 
case. 

The following is immediately evident as a common feature of all five 
systems. Unlike the case of no anomalous scatterers in which there are 
fluctuations in equilibrium, it is seen that the presence of anomalous scat- 
terers forces the system to reach an equilibrium configuration in which there 
is no fluctuation in T. We shall refer to this as absolute equilibrium. Further- 
more, the Poincar6 cycle is completely destroyed by the presence of even 
one anomalous scatterer. The above behavior may be thought of as a 
theorem, which we now prove by means of the following lemmas, given an 
initial condition of all white balls. 

D e f i n i t i o n .  An interval is the distance on the p axis between any two 
adjacent scatterers. 

Lemma 1. Parallelograms bounded by diagonal lines and vertical lines 
through adjacent scatterers alternate color if the scatterers are ordinary. 
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Parallelograms bounded on the left by a vertical line through an anomalous 
scatterer are black. 

Proof. This follows directly from the time development picture, together 
with the definition of ordinary and anomalous scatterers. 

Corollary. The interval directly to the right of an anomalous scatterer 
is black after a time equal to the length of the interval directly to the left 
of this scatterer: 

L e m m a  2. The time required for a column to stabilize its color (reach 
equilibrium) is the distance of the right side of the column from the nearest 
anomalous scatterer to the left. 

Proof. The time required for a column directly to the right of an anom- 
alous scatterer to stabilize its color (black) is equal to the width of the 
column. Since the parallelograms alternate in color to the right of this 
column until the next anomalous scatterer is reached, the time required for 
any column to stabilize its color is as stated. 

Coro l l a ry .  The maximum time for a system to come to equilibrium is 
n - (ml - 1) for the case when all the anomalous scatterers are consecutive. 
Thus the system will always come to absolute equilibrium in a time less than 
or equal to n. 

T h e o r e m .  An arbitrarily large but finite ring model with an arbitrarily 
large number of ordinary scatterers and an arbitrarily small number of 
anomalous scatterers will reach absolute equilibrium (constant value of P) 
in a time less than the largest distance between anomalous scatterers. 

The theorem implies that there is a qualitative difference between the 
behavior of large ring models with m/n fixed and containing some or no 
anomalous scatterers. This is true for the Poincar6 cycle, which is a mani- 
festation of the reversibility of the underlying dynamics. The absence of a 
Poincar6 cycle for a system containing anomalous scatterers merely reflects 
the microscopic irreversibility. However, the approach to equilibrium which 
is a consequence of the statistical nature of a large system is unaffected by a 
small number of anomalous scatterers. This is so because the relaxation 
time is given by r = n/2m, which is much smaller than the largest distance 
between anomalous scatterers (>n/2ml).  Thus, the system settles down to 
ordinary (fluctuating) equilibrium long before absolute equilibrium sets in. 

4. CONCLUSION 

The behavior of the foregoing model, while of interest in itself, has 
some implication for the behavior of a universe containing microscopic 
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reactions which are not time-reversal invariant. The obvious application is 

to the case of  the K - K  coupling to the baryons. Of  course, any conclusions 
about  a three-dimensional system, especially one in which the interactions 
are far more complicated than those of the Kac ring model, are immediately 
suspect. Nevertheless, it is interesting to speculate on the nature of  such 
conclusions. 

The main effect of  the inclusion of an arbitrarily small number of  
anomalous scatterers in the original Kac ring model is the destruction of 
the Poincar6 cycle. I f  this behavior is symptomatic of all systems, then the 
obvious conclusion is that the presence of an arbitrarily small number of  

K - K  particles, or alternatively, an arbitrarily small, time-irreversible branch- 
ing ratio for K decay, will destroy the Poincar6 cycle of  the universe con- 
sidered as a closed system. This would probably rule out oscillating universes 
as cosmological modelsJ 8) 

Another consequence of the destruction of the Poincar6 cycle is a dif- 
ference in the form of F in the limit of  arbitrarily small number of  anomalous 
scatterers and the form of r when no anomalous scatterers are present. In 
the first instance, a certain effect is present (F ~ 0 = const for t > n) which 
is not present in the second instance F(t = n) = I?(t = 0). This is analogous 
to the statistical mechanical treatment of  the ideal gas as the limit of  a gas 
with arbitrarily weak interparticle interactions in contrast with a system for 
which the interparticle interactions are strictly zero. In the first instance, a 
certain effect is again present (Maxwell-Boltzmann distribution of velocities 
for t > relaxation time) which is not present in the second instance (distribu- 
tion of velocities equals initial distribution for all time). 
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